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Goal
• Learn embeddings for hierarchical sequential data (video and

text) where they have correspondence across multiple
modalities.

Highlights
• Propose to hierarchically model cross-modal sequential data.

• Preserve correspondence of complex structures across modalities
through discriminative losses and contrastive losses.

• State-of-the-art performance on video and paragraph retrieval.

• Systematical study on several tasks involving video and language.

Tasks & Datasets

• Video and Text Retrieval:

• Ablations:

• Video Captioning and Zero-shot Action Recognition:

• Check paper for more results and ablations studies!

Approach
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• Tasks: Video/Text Retrieval, Video Captioning, Zero-shot 
Action Recognition

• Datasets: ActivityNet Dense Caption; ActivityNet V1.3; DiDeMo

Experiments & Analysis

Paragraph => Video Video => Paragraph

R@1 R@5 R@50 R@1 R@5 R@50

C3D with Dimension Reduction
DENSE 14.0 32.0 65.0 18.0 36.0 74.0

FSE 12.6 33.2 77.6 11.5 31.8 77.7

HSE 32.7 63.2 90.8 32.8 63.2 91.2
Inception-V3

FSE 18.2 44.8 89.1 16.7 43.1 88.4

HSE 44.4 76.7 97.1 44.2 76.7 97.0

Paragraph => Video Video => Paragraph

R@1 R@5 R@50 R@1 R@5 R@50

Inception-V3
S2VT 11.9 33.6 76.5 13.2 33.6 76.5

FSE 13.9 36.0 78.9 13.1 33.9 78.0

HSE 29.7 60.3 92.4 30.1 59.2 92.1

Table1. Performance on ActivityNet Dense Caption Table2. Performance on DiDeMo

Our approach HSE outperforms SotA by 

a large margin.

With Ground-truth clip proposal

With heuristic clip proposal

Proposal Method Paragraph => Video Video => Paragraph
Inception-V3 #Seg. R@1 R@5 R@1 R@5

FSE - 18.2 44.8 16.7 43.1

HSE+GT - 44.4 76.7 44.2 76.7

HSE + Uniform 3 20.0 48.6 18.2 47.9
HSE + Uniform 4 20.5 49.3 18.7 48.1

Table3. Performance on ActivityNet Dense Caption w/o clip proposal
Retrieval with incomplete video and paragraph

Video to Paragraph
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With a poor uniform proposal, HSE can already 

outperform FSE methods.

B@1 B@2 B@3 Meteor CiDER
DENSE 26.5 13.5 7.1 9.5 24.6

DVC 19.6 9.9 4.6 10.3 25.2

FSE 17.9 8.2 3.6 8.7 32.1
HSE 19.8 9.4 4.3 9.2 39.8

Table 4. Results for video captioning on ActivityNet

Zero-shot Transfer Train Classifier
Top-1 Top-5 Top-1 Top-5

FV-VAE - - 78.6 -

TSN - - 88.1 -

FSE 48.3 79.4 74.4 94.1

HSE 51.4 83.8 75.3 94.3

Table 5. Results for action recognition on ActivityNet

Qualitatively Results

• T-SNE 
visualization of 
video 
embedding of 
HSE on 
ActivityNet V1.3

ActivityNet Training Set ActivityNet Validation Set
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